

Łódź University of Technology

Faculty of Electrical, Electronic, Computer and Control Engineering

Institute of Applied Computer Science

Institute of Electronics

Implementation of a Highly Scalable and Highly Available Environment

for Containerized Applications Based on Kubernetes

Wdrożenie wysokoskalowalnego i wysokodostępnego środowiska

dla aplikacji skonteneryzowanych w oparciu o Kubernetes

Jakub Papuga

Computer Science

PhD Eng. Michał Bujacz

Łódź, 2023

Implementation of a Highly Scalable and Highly Available

Environment for Containerized Applications Based on Kubernetes.

Abstract

This thesis presents a comprehensive study on the best practices for containerization and how to

implement a Kubernetes cluster for high-availability applications. The main goal of the thesis is to

provide practical guidance for engineers and architects who want to design and implement a

robust and scalable environment for applications that require high availability.

The paper starts with an overview of containerization, its benefits, and its need in today's

technology landscape. It then covers the basics of Kubernetes and its features, including

container orchestration, scaling, and self-healing capabilities. The study also covers the various

components of a Kubernetes cluster, such as nodes, pods, services, and more.

One of the key aspects of the study is the example of a highly scalable and highly available data

ingestion pipeline. This example serves as a practical demonstration of how Kubernetes can be

used to create a resilient and scalable environment for data ingestion. The pipeline includes

various components such as data collection, data processing, and data storage, and the

implementation of each component is discussed in detail.

Keywords:

High Availability, Kubernetes, Docker, High Scalability, Orchestration

Wdrożenie wysokoskalowalnego i wysokodostępnego środowiska

dla aplikacji skonteneryzowanych w oparciu o Kubernetes.

Streszczenie

W niniejszej pracy przedstawiono kompleksowy zestaw najlepszych praktyk w zakresie

konteneryzacji oraz sposobu wdrożenia klastra Kubernetes dla aplikacji o wysokiej dostępności.

Głównym celem pracy jest dostarczenie praktycznych wskazówek dla inżynierów i architektów,

którzy chcą zaprojektować i wdrożyć solidne i skalowalne środowisko dla aplikacji wymagających

wysokiej dostępności.

Praca rozpoczyna się od przeglądu konteneryzacji, jej korzyści i potrzeby w dzisiejszym

krajobrazie technologicznym. Następnie omawia podstawy Kubernetes i jego funkcje, w tym

orkiestrację kontenerów, skalowanie i możliwości samoleczenia. Praca obejmuje również różne

element klastra Kubernetes takie jak serwery, zasoby typu „Pod” oraz „Service” i inne.

Jednym z kluczowych elementów opracowania jest przykład wysoko skalowalnego i wysoko

dostępnego potoku pozyskiwania danych z urządzeń. Przykład ten służy jako praktyczna

demonstracja tego, jak Kubernetes może być użyty do stworzenia odpornego i skalowalnego

środowiska do przetwarzania danych. System obejmuje różne komponenty, takie jak zbieranie

danych, przetwarzanie danych i przechowywanie danych, a implementacja każdego komponentu

jest szczegółowo omówiona.

Słowa kluczowe:

Wysoka dostępność, Kubernetes, Docker, wysoka skalowalność, orkiestracja

1

1. Introduction 3

2. Containerization 4

2.1. Open Container Initiative 5

2.2. Simple "Hello World!" application 6

2.3. Image Layers 9

2.3.1. Include dependencies 9

2.3.2. Caching 10

2.3.3. Specific image versions 12

2.3.4. Image security 14

2.3.5. Shrinking image footprint 15

2.3.6. Useful metadata 17

2.4. Volumes 18

2.5. Networking 21

2.6. Declarative approach 23

3. Orchestration 25

3.1. Introduction 26

3.2. Container Runtime Interface 29

3.3. Cluster creation 30

3.3.1. Requirements 30

3.3.2. Environment 31

3.3.3. Node preparations 33

3.3.4. Cluster Networking 35

3.3.5. Cluster Initialization 36

3.4. Persistent Volumes 39

3.5. Pod versus Deployment 42

3.6. High Availability of the "Hello World!" application 44

3.7. Services 45

3.8. Ingress 47

2

3.8.1. NGINX Ingress Controller 48

3.8.2. Ingress Resource 51

4. Example scenario 52

4.1. Data processing pipeline 52

4.2. High Availability and Fault Tolerance 53

4.3. Pod failure 54

4.3.1. Data Ingestion API failure 54

4.3.2. RabbitMQ failure 55

4.3.3. Data Analyzer failure 55

4.3.4. CockroachDB failure 55

4.3.5. Alerts API failure 55

4.3.6. Update failure 56

4.4. Node failure 56

5. Monitoring 57

5.1. CPU consumption 58

5.2. RAM usage 58

5.3. Network I/O 59

6. Scalability 60

7. Summary 61

3

1. Introduction

The world is increasingly utilizing IoT devices (Gillis, 2022). These devices are transitioning

from being used primarily by programmers to water flowers and are now penetrating our lives

at every step. While disruption in access to smart speakers, sockets, or even flower watering

devices may only slightly decrease the owner's comfort, a disruption in the operation of

medical communication devices can lead to potentially life-threatening situations. An example

of such a device is "The Band of Life" (originally named in Polish "Opaska Życia") produced by

Comarch1. In addition to monitoring the user's pulse and activity, this bracelet allows

immediate contact with a loved one or a medical rescuer in an emergency, initiated by pressing

the SOS button. Devices of this type often rely on centralized services maintained by the

manufacturer. Due to the architecture of such systems, even thousands of devices may utilize

a single system. Therefore, in addition to ensuring high availability, the ability to scale such a

system must also be considered.

The purpose of this study is to implement a highly scalable environment for applications that

require high availability. This paper will explain the concept of containerization (Dua et al.,

2014), its benefits, and its need in today's technology landscape. The paper then covers the

basics of Kubernetes and its features, including container orchestration, scaling, and self-

healing capabilities. Various components of the Kubernetes cluster, such as nodes, pods,

services, and deployments, will be presented.

This work is of utmost importance for software engineers and architects responsible for

designing and implementing systems for IoT devices. This study will help them ensure that the

devices they develop are reliable and scalable by providing a comprehensive guide to

containerization and high-availability systems.

All software used and its versions, as well as the source code for the custom application, will

be included in Appendix 1 for reference and practical implementation purposes.

1 https://www.comarch.pl/healthcare/produkty/teleopieka/opaska-zycia/

4

2. Containerization

Containerization is a method of packaging an application and its components, such as

libraries, frameworks, and other dependencies, into a single image that can then be run in

isolation from the rest of the system. In this context, "the rest of the system" can refer to other

similarly packaged applications and the host machine's operating system. However, unlike

virtual machines, containers are not self-sufficient. The container image does not include the

system's kernel, and each container utilizes the kernel of its host system. This means an image

built on Linux cannot be run on a Windows computer, for example. The situation becomes even

more complex when considering changes in architecture; for instance, an image built on the

x86 platform cannot be run on increasingly popular ARM64 servers (Wang et al., 2020).

However, this limitation grants containers a significant advantage over virtual machines in

terms of their lightweight nature, size, and compute resource requirements. Creating a

dedicated environment for building such images has become very popular due to the savings

resulting from better resource utilization (M et al., 2021; Wang et al., 2020) of server resources

being many times higher than the cost of such an environment. It is also worth mentioning that

the necessity of sharing the kernel does not mean that we are forced to share the entire

operating system and its characteristics. A server originally based on Red Hat Enterprise Linux

can be the host for a container based on Ubuntu or the very popular, due to its small size,

Alpine. That is, on distributions with entirely different philosophies.

To run such a container on a server, we must first build its image and then provide some

distribution system for the image. In the world of containers, such distribution systems are

called registries. Registries are like libraries that, in addition to the storage and distribution

function, can include features such as versioning, access control, and even building pipelines.

In the case of Docker, the registry is called Docker Hub (Docker, n.d.). It is an online registry

that is public by default but offers the option of creating private repositories for a fee. Another

popular registry is the private registry provided by the Kubernetes cluster management system.

It is often used in conjunction with the Kubernetes orchestration system.

To execute a container on a server, it is necessary first to build its image and then provide a

distribution system for the image. In the world of containers, these distribution systems are

called registries. Registries are akin to physical libraries. In addition to their storage and

distribution function, they can include features such as versioning, access control, static

vulnerability scanning, and removing duplicate image layers.

5

2.1. Open Container Initiative

To benefit from containerization, three elements are required: an application to build an image,

a registry to store the image, and a runtime environment that can create a container based on

the image. Docker is by far the most well-known and widely used container platform in the

world. The initial release of Docker Engine was in 2013 (Docker Engine Release Notes, 2022).

In 2015, the Open Container Initiative (OCI) was launched by Docker, CoreOS, and other leaders

in the container industry (About the Open Container Initiative, n.d.) with the goal of establishing

open industry standards for containers. As stated on the OCI website:

The OCI currently contains three specifications: the Runtime Specification (runtime-

spec), the Image Specification (image-spec) and the Distribution Specification

(distribution-spec). The Runtime Specification outlines how to run a "filesystem

bundle" that is unpacked on disk. At a high-level an OCI implementation would

download an OCI Image then unpack that image into an OCI Runtime filesystem

bundle. At this point the OCI Runtime Bundle would be run by an OCI Runtime. (About

the Open Container Initiative, 2022)

The Open Container Initiative has provided a common ground for all container tools,

significantly improving interoperability and accelerating the adoption of containers. Some

tools worth mentioning include: Podman2, a daemonless container engine for developing,

managing, and running OCI containers; Buildah3, a tool for building OCI container images;

Buildkit4, another tool for building OCI container images (used in newer versions of Docker);

containerd5, a high-level container runtime that pulls images from registries and hands them

over to a lower-level runtime (initially a part of Docker, later separated out); and runc6, a low-

level container runtime that creates and runs the container process. An image built with Docker

can be executed by cri-o just as easily as Podman can execute an image built with Buildah. In

contrast, virtual machines still lack proper standardization, and migration from VMWare to

Hyper-V or vice versa can be challenging for system administrators. Docker will be used in the

following subchapters as it has all the features needed, wrapped in a user-friendly command

line tool. This chapter aims to familiarize the reader with containerization rather than compare

available platforms and toolchains.

2 https://podman.io/
3 https://buildah.io/
4 https://github.com/moby/buildkit
5 https://containerd.io/
6 https://github.com/opencontainers/runc

6

2.2. Simple "Hello World!" application

Throughout the following few chapters, we will be using a simple "Hello World!" application

made in Deno (1.28.0) as a base. For now, the application only responds to requests to the "/"

endpoint with a simple "Hello World!" message (see Figure 1).

Figure 1 Hello World! application (version 2.2) accessed from Web Browser

Typically, we would run the application using deno's command line tools (i.e., deno run

main.ts). We might also be tempted to use our IDE built-in launch functionality. While this is a

good approach for the development process, it does not provide a way to distribute the

application. We can create a container image by creating a simple Dockerfile:

Snippet 1 Dockerfile version 2.2

The FROM keyword allows us to specify an existing image as the base for our image. The

WORKDIR keyword specifies a working directory for subsequent commands. To follow best

practices and avoid working within the root directory ("/"), we will switch to the "/app" directory.

The ADD keyword is a more powerful version of COPY; it can not only copy local files but also

extract tar archives and download files from remote URLs on-the-fly. We will use ADD to copy

our source code to the image in our case. The final CMD statement specifies the arguments

to be used for the ENTRYPOINT, which has already been defined in denoland/deno:1.28.0 by

the deno maintainers as deno itself. The combination of ENTRYPOINT and CMD will result in

the execution of the "deno run –allow-net main.ts" command.

With the above Dockerfile, we can build the image using the "docker build" command.

7

According to the documentation:

The docker build command builds Docker images from a Dockerfile and a "context".

A build's context is the set of files located in the specified PATH or URL. The build

process can refer to any of the files in the context. For example, your build can use

a COPY instruction to reference a file in the context. (Docker Build, n.d.)

In the case of our "ha-demo-app" case, the context is the folder with the application's source

code. Since our command line's working directory is usually the project directory, we can

simplify the PATH to "." (see Figure 2).

Figure 2 Building ha-demo-app (version 2.2) using the docker build command

Docker images are identified by their hash, which can be seen in the IMAGE ID column in Figure

x. While hashes help identify images, they are difficult for humans to understand. When we

anticipate that humans will interact with our image, we should name it using the "docker tag"

command. It is also possible to give an image multiple tags, as shown in Figure 3.

Figure 3 Manually tagging the ha-demo-app image with version 2.2

8

We can also tag our image during the build stage by using the "--tag" or " -t" argument with the

"docker build" command. If we do not specify a tag, the "latest" tag will be used by default, as

shown in Figure 4.

Figure 4 Tagging ha-demo-app image during build time

We can create a container from our image using the "docker run" command. Since our

application is a web application, we may want to publish some container ports to the host

using the "--publish" or " -p" argument. As with the "docker build" command, if we do not specify

the image tag, the "latest" tag will be used by default, as shown in Figure 5.

Figure 5 Running ha-demo-app (version 2.2) with published ports

9

2.3. Image Layers

Thus far, we have been using a basic Dockerfile that copies the application's source code. In

this chapter, we will enhance our image to make it suitable for production use.

2.3.1. Include dependencies

In the previous chapter, we saw that Deno downloaded dependencies when we ran the

container (as shown in Figure 5). This occurred because we only copied the application's

source code to the image. This approach is not suitable for an air-gapped production

environment. Additionally, the dependencies may change over time, and the application may

fail to run. To address these issues, we can download the dependencies during the image

creation process rather than during the application runtime. Deno provides the "deno cache"

command to download dependencies at any time, and we can leverage this functionality. Using

the RUN keyword, we can execute arbitrary commands during the image build process. By

doing this, we can ensure that the dependencies are available when the application is run.

Snippet 2 Dockerfile with dependency caching (version 2.3.1)

As the new image will contain the application dependencies, the image size is expected to

increase slightly. However, this change will allow the application to run without downloading

any libraries from the internet, as shown in Figure 6.

Figure 6 Running ha-demo-app (version 2.3.1)

10

2.3.2. Caching

Now is an excellent time to introduce the concept of layers. We can view the layers of an image

by using the "docker history" command, as shown in Figure 7. Every instruction within the

Dockerfile that modifies the filesystem creates a new layer.

Figure 7 History of image ha-demo-app (version 2.3.1)

Starting from the bottom, we can see an image with ID bf0be72be009, which is the hash of

denoland/deno:1.28.0 that we specified in the FROM keyword in our Dockerfile. While we are

missing the intermediate layers, we can still see how the Deno maintainers created the image.

The layers created three weeks ago are likely the underlying Linux distribution files that the

Deno maintainers used as a base. In the layers created five days ago, we can see that the Deno

maintainers started by creating a new user with UID 1993, added some metadata with

environmental variables, copied the Deno runtime, and set the default ENTRYPOINT and CMD

for the container. The layers created seconds ago were created by us based on the Dockerfile.

We changed the working directory to /app, added our source code, downloaded the

dependencies, and overwrote the default arguments for the ENTRYPOINT using the CMD

instruction.

11

Figure 8 Graphical representation of image history

It is important to note that image layers are essentially diffs, with the newer layer containing

information about the differences compared to the parent layer. By incorporating caching into

our workflow, we can leverage this information and optimize the build times of our images.

Our source code may change frequently, but our dependencies remain consistent. By

separating our ADD layer into two layers - one for copying dependencies and one for copying

the application source code - we can avoid downloading dependencies every time the source

code is modified and instead utilize cached dependencies. This can be achieved through

modifications to the Dockerfile, as demonstrated in Snippet 3.

12

Snippet 3 Dockerfile with layer caching (version 2.3.2)

Henceforth, dependencies will be cached unless the contents of the deps.ts file are modified.

Note: Newer versions of Docker include a new tool called Buildkit for building images, which

does not retain intermediate images. As a result, the appearance of Figure 7 may differ when

using Buildkit. It is possible to revert to the original Docker build tool by exporting the

DOCKER_BUILDKIT=0 environment variable or editing the daemon.json file. For up-to-date

information, refer to Docker's BuildKit documentation7.

2.3.3. Specific image versions

We have previously adhered to the best practice of using as specific images as possible, but

it is worth explaining the reasoning behind this rule.

The use of specific images ensures that the same version of the code and its dependencies

are used every time, reducing the risk of inconsistencies in the application's behavior. This is

particularly important in production environments, where a single change to the codebase

could cause significant problems for the users. By using specific images, the application can

be deployed with confidence, knowing that the same image will be used every time.

It is important to note that image tags are not necessarily tied to a specific image ID. If we

examine Deno's Docker Hub (Docker's default image registry), we can observe multiple tags

associated with the same image.

7 https://docs.docker.com/build/buildkit/

13

Figure 9 Different tags available on Docker Hub

In Figure 10, we can see that tags debian and debian-1.28.1 are bound to the same image with

ID ed510a79f5c1. We can deduce from this information that the debian tag will always point

to the newest version of Deno. As time passes, we might want to push a patch or introduce

new functionality to our application. We may not want our build to fail or, even worse, have our

application misbehave only because the version of our underlying images has silently changed

with breaking changes in the newer version. We should always be pointing to as specific an

image as possible. If the maintainers of a particular project follow Semantic Versioning8, it is

a good practice to point to an image with specific MAJOR and MINOR versions. It is generally

accepted to use a tag without a PATCH version (provided that maintainers provide such a tag),

as patch releases should not introduce a breaking change, only bug fixes.

8 https://semver.org/

14

2.3.4. Image security

By default, all processes within a container are run by the root user. This violates the principle

of least privilege (PoLP) (What Is the Principle of Least Privilege (POLP), 2022). In case our

application gets compromised, we do not want the attacker to be able to start undesirable

processes in our container. Beyond modifying our configuration, the attacker might be able to

install additional software to exploit our infrastructure further. Moreover, if a container runtime

vulnerability is discovered, running the container as an unprivileged user will prevent the

attacker from gaining elevated permissions on the host.

Running as non-root requires a couple of additional steps inside our Dockerfile. We must

ensure that the specified user exists (and if not, create one). Furthermore, we need to provide

the user with appropriate file system permissions. In our demo application, this can be

achieved in the following way:

Snippet 4 Dockerfile with defined USER (version 2.3.4)

To visualize the changes, the demo application has been extended with whoami functionality

displayed below "Hello World!". Please see the figures below (Figure 11, Figure 12).

Figure 10 Application running as root (before changes)

15

Figure 11 Application running as deno-app (after changes)

2.3.5. Shrinking image footprint

We can optimize the image size to make our future deployments more snappy. Lowe image

size should decrease the time needed to download the image from the registry by the

destination server. One of the simplest ways to achieve that is to replace the base image with

a more lightweight one. In the case of Deno, the maintainers have prepared multiple base

images: Debian (approx. 69MB), Ubuntu (approx. 65MB), CentOS (approx. 118MB), and Alpine

(approx. 46MB). So far, we have been using the default "1.28.0" image based on Debian.

Replacing the base distribution with a more lightweight one has another significant benefit -

decreased vulnerability plane. Smaller distributions come with lower amounts of packages

that an attacker could potentially exploit.

Since we are not using any functionality specific to Debian, we can swap the image for the

smallest distribution supported by Deno - Alpine. This can be done by modifying the FROM

keyword in our Dockerfile:

Snippet 5 Dockerfile with Alpine as the base image (version 2.3.5-alpine)

16

As a result, our image size has decreased from 188MB to 124MB (see Figure 12).

Figure 12 Image sizes after changing the base image to Alpine (version 2.3.5-alpine)

Many languages can be compiled and run without the need for compiler presence. We can

divide our Dockerfile into two stages - one for compiling the application and the second for

running it. Only the second stage will be kept for distribution. In the container world, we call

such an approach a multistage build.

Deno is an interpreted language, and the interpreter has to be present during the execution of

the application; however, Deno can be "compiled" into a self-contained executable. While we

will not see a drastic change in the image size compared to traditionally compiled languages

such as C, C++, C# (gigabytes down to megabytes), or Golang (hundreds of megabytes to a

dozen megabytes), we should still be able to cut down on some unnecessary parts of the base

image. This can be achieved by introducing another FROM keyword to the Dockerfile. To be

able to copy the files from the previous stage, we need to name the stages with the AS

keyword:

Snippet 6 Multistage Dockerfile example (version 2.3.5-multistage)

17

Notice that we have moved the user creation to the "runner" stage, as we only care about the

user during runtime, not compilation time. The resulting image is 12MB smaller than the

previous one (see Figure 13).

Figure 13 Image sizes after implementing multistage build (version 2.3.5-multistage)

Opinion: Avoid using SCRATCH or BIN images. Scratch containers are not only hard to debug

by DevOps teams in production environments (missing shell, package manager), but they also

have multiple pitfalls which may prevent the application from running. Such pitfalls include

missing proper user management, important folders (e.g., /tmp), timezone info, and even CA

certificates. If possible, use distro-based or so-called distroless9 images.

2.3.6. Useful metadata

Dockerfile specification has multiple instructions that can be considered metadata. The ones

worth mentioning are LABEL and EXPOSE. The LABEL instruction can set arbitrary labels,

though it is often used to indicate the author of the generated images. The EXPOSE instruction

informs the runtime that the container listens on the specified port. The EXPOSE instruction

does not actually publish the port. It functions as a documentation between the person who

builds the image and the person who runs the container about which ports are intended to be

published. If we pass the "--publish" flag to "docker run" without specifying the exact ports,

docker will automatically map the port from EXPOSE instruction to a randomly available port

on the host.

9 https://github.com/GoogleContainerTools/distroless

18

Note: Some Dockerfiles may contain the MAINTAINER instruction. It is currently considered

deprecated in favor of more generic LABEL instruction. However, the principle stays the same.

Snippet 7 Example of Dockerfile with EXPOSE and LABEL instructions (version 2.3.6)

2.4. Volumes

We start with a fresh copy of our image every time we create a container. By default, containers

have no data persistence. Since we may want to persist the data generated by our application

(logs, database contents), we have to use volumes.

Our demo application has been extended for demonstration purposes with a logger and two

new endpoints /hello/:name (where :name is a variable) and /logs. The logs are kept in a file.

If we run the container and visit a few pages, we see our visit history in the logs (Figure 15).

19

Figure 14 /logs endpoint in a web browser

If we now recreate the container, the data will be lost. To persist the logs, we must create a

volume and mount it inside the container. A volume can be either created explicitly or

automatically. To create a volume explicitly, use "docker volume create" (see Figure 16).

Figure 15 Creation of a docker volume

To create a volume automatically, it is enough just to mount it to the container using "docker

run" (see Figure 17).

Figure 16 Automatically creating a volume with docker run

In figure 16 above, we got a PermissionDenied error. The error indicates that the application

has no permission to the logs folder. This is because we are running as a non-root user inside

the container, and docker's volume has been mounted with root-only permissions. As of

December 2022, it is impossible to mount the volume as a user other than root (please see

issue #2259 on https://github.com/moby/moby). Our only option is to adjust the volume

20

permissions during the runtime. The demo-app user does not have permission to change the

volume ownership; however, Linux native binaries can be run with elevated privileges. The

setuid instruction tells the Linux kernel to run an executable as the owner of the executable

instead of the current user. The following Go10 code will be used to change the /app/logs folder

ownership (see Snippet 8).

Snippet 8 Go function to adjust permissions for deno-app user

The code will be compiled into a binary in a separate stage inside the Dockerfile, copied into

the final stage, and given the setuid flag using the "chmod command (see Snippet 9 and

Snippet 10).

10 https://go.dev/

21

Snippet 9 gocompiler stage in Dockerfile (version 2.4)

Snippet 10 runner stage in Dockerfile (version 2.4)

We should now be able to run our Deno project.

Warning: Do not create a reusable setuid binary that calls another script unless you can

guarantee that an attacker cannot modify the script. Be aware of any race conditions that can

be exploited.

2.5. Networking

If we want our containers to be able to connect to each other, we have to put them within the

same network. Containers within the same network can communicate freely using each

other's names. By default, docker puts all containers within the same network. We can reduce

our potential attack surface by separating our workloads into separate networks. A network

can be created using the "docker network create" command (see Figure 18).

22

Figure 17 Manual creation of docker network

To run a container inside a specific network, the "--network" flag has to be passed to the

"docker run" command (see Figure 18).

Figure 18 Running ha-demo-app with network and volume (version 2.5)

The ha-demo-app has been extended to include an Elasticsearch logger for demonstration

purposes. Elasticsearch is a part of the Elastic Stack, a data analysis platform. In addition to

the Elasticsearch database, we will also use Kibana, another tool from the Elastic family, to

visualize the data. The final network should resemble the following (see Figure 19).

23

Figure 19 Visual representation of network with ha-demo-app and elastic stack

2.6. Declarative approach

So far, all the examples have been presented using imperative methods. Imperative

configuration involves creating resources directly at the command line, which can be difficult

to manage and maintain. This approach can make it challenging to recreate an imperatively

created state, as it can be hard to keep track of the exact steps that were taken. Additionally,

rolling back to a previous state could be problematic, as it may be challenging to recreate the

previous configuration accurately. Overall, using an imperative approach can be tedious, error-

prone, and may not be as flexible or scalable as a declarative approach.

Declarative configuration involves defining resources and their desired state through a

manifest file. It enables the specification of application services, networks, and volumes

configuration in a clear manner. Therefore, it enhances understanding and maintenance of the

application configuration and facilitates scaling and modification as required. Keeping the

manifest file in a version-controlled repository allows changes to the application configuration

to be tracked, and previous versions can be easily rolled back if needed. The declared state of

the application can then be managed and set up automatically by tools like Docker Compose.

24

Snippet 11 Docker compose file for ha-demo-app (version 2.5)

Note: By default, Docker Compose creates a separate network for each project. The network

is named based on the "project name," derived from the Compose file's directory. If you plan

to have multiple projects that need to communicate with each other, it may be necessary to

create a network beforehand and connect the containers within each project to that network.

For more information, please refer to the documentation on networking in Docker Compose11

and the Docker Compose file reference12.

11 https://docs.docker.com/compose/networking/
12 https://docs.docker.com/compose/compose-file/compose-file-v3/

25

3. Orchestration

Orchestration is a way of managing a large environment of software and hardware

components that make up a computing system, such as a network of servers. The role of an

orchestrator is to maintain a desired state with as little human interaction as possible. The

maintenance typically involves monitoring various components and making adjustments as

necessary to keep them in line with the desired configuration. It may include starting and

stopping services, scaling up or down the resources allocated to a particular component, or

implementing other changes.

 An orchestrator typically uses some form of automation, though it is essential to understand

that orchestration is not automation. Automation is a task that is only concerned with the

present state of the environment. An orchestrator continuously checks if the actual state of an

environment matches the desired state. If any external event impacts the environment's actual

state, the orchestrator's job is to overcome the problem and bring back the state to a desired

state. An example of such an event could be a failed node. In such a situation, an orchestrator

should reschedule the application to a different node.

The following chapters will focus on Kubernetes - one of the most popular and influential

container orchestrators (Schmeling & Dargatz, 2022).

There are several benefits to using orchestration with Kubernetes. First, it allows for efficient

resource management by automatically scheduling and deploying containers on available

resources, which can help to optimize the use of computing resources and reduce the need

for manual intervention.

Second, orchestration can improve the scalability of applications by making it easy to deploy

and manage large numbers of containers, especially in situations where applications may need

to scale up or down quickly to meet changing demand.

Third, orchestration can help improve applications' reliability and availability by automatically

detecting and replacing failed containers and providing mechanisms for rolling out updates

and rollbacks to ensure that applications remain available and stable.

Note: In the following chapters, the term deployment and Deployment will be used extensively.

To clarify, "Deployment" with a capital "D" refers to a resource object in Kubernetes. In contrast,

"deployment" with a lowercase "d" refers to the general process of releasing and updating an

application or service in a specific environment.

26

3.1. Introduction

In Kubernetes, there are two main types of nodes: master nodes and worker nodes. Master

nodes are the "control center" of the Kubernetes cluster. They manage the cluster and expose

a RESTful API for the management of the cluster. Master nodes are responsible for scheduling

and deploying containers onto worker nodes, and they also monitor the cluster's health and

the containers running in the cluster.

The master node comprises several components: the API server, the scheduler, and the

controller manager. The API server is the main entry point for all administrative tasks and is

responsible for the cluster's overall state. The scheduler is responsible for deciding which

worker node should run a given container. The controller manager is responsible for managing

the system's state and ensuring that the desired state of the cluster matches the actual state.

In a stacked topology, the master nodes also run an instance of etcd - a database where

information about cluster state is stored.

Figure 20 Visual representation of components in a master Kubernetes node

Worker nodes run the containers and communicate with the master node to receive

instructions. They have a few components, including the kubelet, the primary agent

communicating with the master node, and the container runtime responsible for running the

containers.

27

Figure 21 Visual representation of components in a worker Kubernetes node

Since master nodes are responsible for managing the state of the cluster, running multiple

master nodes increases the fault tolerance of the cluster. Suppose one of the master nodes

fails or becomes unavailable. In that case, the other master nodes can continue to coordinate

the cluster and ensure that the containers and services continue to run without interruption.

 Not all components of the Kubernetes master node can run in an active-active mode.

Only one controller manager and one scheduler can be active at a given time. Since no data

persistence is involved, every process should behave the same way the leader is elected on a

first-come basis. On startup, the controller manager and the scheduler try to become a leader

by creating a lock on an Endpoint object in Kubernetes for a fixed amount of time (by default:

15 seconds). The active instance then renews the lock periodically (by default: every 10

seconds), while the other instance remains in standby mode, periodically trying to acquire the

lock (by default: every 2 seconds). If the previous leader fails to renew their lock, another

instance can become the new leader.

 Etcd is another component that requires special attention when designing a cluster.

Since it is a database, keeping a consensus across all the instances is the highest priority. Etcd

uses The Raft Consensus Algorithm (Diego Ongaro, John Ousterhout, 2014). The Raft

algorithm works by electing a leader among the servers in the system and then using that

leader to coordinate and replicate operations across the servers. The leader is responsible for

receiving client requests, appending them to its log, and then replicating those logs to the other

servers in the system. The servers in the system use a voting process to ensure that only a

single leader is active at any given time. They also use a quorum-based approach to ensure

that a majority of the servers agree on the contents of the log before it is considered

committed. Using the Raft algorithm, a distributed system can ensure that all of its servers

have a consistent view of the data, even in the face of network partitions and other failures.

28

This can help to prevent data inconsistencies and other problems, and it can also make it

easier to implement fault-tolerant distributed systems.

The quorum must consist of a majority of the instances; therefore, the number of necessary

instances can be expressed using the following formula:

𝑄𝑢𝑜𝑟𝑢𝑚 = 𝑁/2 + 1

Where N is the number of total etcd instances.

Table 1 Recommended number of instances in a highly available cluster

Instances Quorum Fault tolerance Split-brain possibility Recommended

1 1 0 n/a Yes*

2 2 0 Yes No*

3 2 1 No Yes

4 3 1 Yes No

5 3 2 No Yes

6 4 2 Yes No

7 4 3 No Yes

* no etcd high availability possible

A split-brain situation is where instances are separated into two groups of the same size, and

no quorum can be established (see Figure 22). This may happen during network segmentation.

To avoid split-brain situations, the number of instances should be odd.

Figure 22 Visual representation of a segmentation

29

Note: In more sophisticated clusters, multiple schedulers can be used. However, only one

scheduler can be used by a single deployment, and the deployment must specify which

scheduler should be used. Multiple schedulers are used to provide multiple scheduling logic.

3.2. Container Runtime Interface

To run containers, Kubernetes needs a container runtime. Since Kubernetes is an open-source

project maintained and developed by many companies and individuals, it was crucial to

provide an unbiased interface between Kubernetes and container runtimes available on the

market. Similarly to the runtime specifications settled by the Open Container Initiative, a

Container Runtime Interface13 specification was established to provide a standard set of APIs

for interacting with container runtimes, allowing for greater flexibility and interoperability in the

Kubernetes ecosystem.

So far, we have thought of Docker as a container runtime engine. When using the docker run

command, the command is actually being internally forwarded to the Docker daemon, which

invokes containerd, which calls runc. The following Figure represents the projects involved in

running a container with Docker:

Figure 23 Visual representation of internal Docker calls

Essentially, docker is just a human-friendly interface for containerd and therefore does not

conform to the Container Runtime Interface specification. Those human-friendly

enhancements are not only unnecessary for Kubernetes but also create another abstraction

layer that must be worked around. Moreover, the centralized nature of Docker Engine (single

daemon) does not allow for the parallelity required in large clusters.

With that in mind, we will install just the containerd on our nodes as it is CRI compatible by

itself. Kubernetes themselves will provide a human-friendly interface.

13 https://github.com/kubernetes/community/blob/master/contributors/devel/sig-node/container-
runtime-interface.md

30

3.3. Cluster creation

Throughout this chapter, we will create a production-grade Kubernetes cluster in an on-

premise environment. To create the cluster, we will use a first-party tool called kubeadm.

Familiarity with your choice's Linux distribution and basic networking knowledge will be

necessary. The finished cluster will resemble the following:

3.3.1. Requirements

To successfully create a cluster, the following criteria must be met:

- Full network connectivity among all machines in the cluster.

- Unique hostname, MAC address, and product_uuid for every node.

- Swap disabled on every node.

31

If a firewall is present in the network, certain ports have to be open. Refer to the current Ports

and Protocols 14reference page.

The following assumptions have been made:

- Every node has a domain name, and a DNS server is present (if no DNS server is

available, entries to /etc/hosts will be sufficient).

- A load balancer is available (if no hardware load balancer is available, a software-

defined HTTP(s) load balancer like nginx is sufficient).

- Every node has access to the internet during cluster creation.

3.3.2. Environment

For demonstration purposes, an on-premises-like infrastructure has been created within

Hetzner Cloud15. Hetzner has been chosen based on the following criteria:

- private networking,

- managed load balancers,

- Container Storage Interface driver (discussed in 3.4),

- ready to use Terraform provider,

- speedy VM provisioning,

- custom cloud-init configuration,

- automatic backups,

- hourly billing with no commitment.

14 https://kubernetes.io/docs/reference/networking/ports-and-protocols/
15 https://www.hetzner.com/cloud

32

The following resources have been utilized to create the environment within Hetzner Cloud. A
Terraform script can be found in Appendix 1.

Table 2 Resources created in Hetzner Cloud

Type Name Product Additional information
Price (ex.

VAT)

VM pfsense* CX11 Ubuntu 22.04, SSH server € 3.29/mo

VM c1-master1 CPX11 Ubuntu 22.04, master node € 3.85/mo

VM c1-master2 CPX11 Ubuntu 22.04, master node € 3.85/mo

VM c1-master3 CPX11 Ubuntu 22.04, master node € 3.85/mo

VM c1-node1 CX21 Ubuntu 22.04, worker node € 4.85/mo

VM c1-node2 CX21 Ubuntu 22.04, worker node € 4.85/mo

VM c1-node3 CX21 Ubuntu 22.04, worker node € 4.85/mo

Load
Balancer

c1-master LB11
Used by Kubernetes API server
on master nodes

€ 5.39/mo

Load
Balancer

c1-worker LB11
Used by Ingress on workers
(discussed in 3.6)

€ 5.39/mo

Network Kubernetes N/A
A private network for internal
communication

€ 0.00/mo

Placement
group

ha-demo-
kubernetes

N/A Type: spread € 0.00/mo

 Total:
€ 40.17/mo
€ 0.0757/hr

The virtual machine pfsense will be used as a DNS server and a virtual router. It does not play

a role in the Kubernetes cluster and can be skipped in on-premise environments. A Terraform

configuration file is available at the end of this document

33

Note: Throughout the following chapters, some commands will be given. Be aware that those

may vary depending on your Linux distribution choice. In this document, Ubuntu will be

assumed.

3.3.3. Node preparations

To be able to run containers, we need a container runtime engine. As discussed in chapter 3.2,

we will continue with containerd, a lower-level container runtime compared to Docker that

conforms to Container Runtime Interface specification. This step will vary based on the

preferred Linux distribution, though containerd should be available in most distribution

package repositories. For Ubuntu, the following command will install containerd:

Figure 24 Installing containerd

Control groups, also known as cgroups, are used in Linux to manage resources allocated to

processes. The kubelet and container runtime need to use control groups to enforce resource

limits for pods and containers, such as CPU and memory requests and limits. To do this, they

need to use a cgroup driver. The kubelet and container runtime must use the same cgroup

driver and be configured in the same way. The cgroupfs driver is the default cgroup drive.

However, the cgroupfs driver is not recommended when using the systemd init system

because systemd expects only one cgroup manager. Since Ubuntu is a systemd-based

distribution, it is necessary to configure containerd to use systemd as its cgroup driver. This

can be accomplished by generating a default containerd configuration file and modifying it in

the following way:

Figure 25 Generating configuration for containerd

34

Figure 26 Modyfing containerd to enable systemd cgroups

To apply the changes, we have to restart the containerd

Figure 27 Restarting containerd to apply the new configuration

Kubernetes requires two kernel modules to be enabled - overlay and br_netfilter. This can be

achieved in the following manner:

Figure 28 Enabling overlay and br_netfilter kernel modules

Kubernetes also require three sysctl params that enable IPv4 forwarding visible to iptables:

Figure 29 Enabling IPv4 forwarding

35

To bootstrap a Kubernetes cluster with kubeadm, all nodes must have installed kubeadm and

kubelet. The recommended way to do this is to add the Kubernetes package repository to the

package manager. This can be done in the following manner:

Figure 30 Adding Kubernetes package repository

We can now proceed and install both kubeadm and kubelet. Since both kubeadm and kubelet

require a special procedure to update, putting them in a hold state is recommended, so they

will not be considered when performing an automatic upgrade of all packages.

Figure 31 Installing kubeadm and kubelet

It is necessary to install and configure containerd, kubeadm, and kubelet on all cluster nodes.

Repeat the above steps as many times as necessary. You may also want to install kubectl on

your computer at this stage. It is a command line tool for interacting with Kubernetes clusters.

3.3.4. Cluster Networking

To create a highly available cluster, we need multiple etcd instances. In a stacked topology,

the etcd instances will be created as static pods. Static pods are containers running inside a

cluster, except that they are created and managed directly by the kubelet rather than the

Kubernetes API server. A network plugin is necessary to establish communication between

pods in a cluster.

 Similarly to Container Runtime Interface, a Container Network Interface defines a set

of standards for configuring network interfaces for containers, including how to assign IP

addresses, route traffic between containers, and how to connect containers to external

networks. There are many CNI plugins available on the market. Some popular ones include

36

Calico16, Flannel17, Weavenet18 , and Cilium19. In an article from Mehndiratta, the differences

between available CNI plugins have been discussed (2021). Mehndiratta summarized the

differences in a single table:

Table 3 Comparision of available CNI plugins (Mehndiratta, 2021)

CNI/Feature Flannel Calico Cilium Weavenet

Encapsulation and Routing VxLAN IPinIP, BGP, eBPF VxLAN VxLAN

Support for Network Policies No Yes Yes Yes

Datastore used etcd etcd etcd No

Encryption Yes Yes Yes Yes

Ingress Support No Yes Yes Yes

Enterprise Support No Yes No Yes

Since we will be using Ingress to access our application from outside of the cluster, we will

continue with Calico as our networking plugin. Calico is also feature rich and has a relatively

low entry level.

Note: Mehndiratta's article also mentions the Canal20 CNI plugin, though it is no longer

supported or maintained by its creators.

3.3.5. Cluster Initialization

To initialize a Kubernetes cluster, we have to issue the kubeadm init command on one of our

master nodes. The cluster initialization is divided into multiple phases by kubeadm. The addon

phase requires the Kubernetes API server to be accessible. The load balancer in use only

targets servers considered healthy; in essence, they must have answered to one or more health

checks. Since the health checking operation takes a while, it may happen that the addon phase

will fail, and the cluster will not be properly initialized. To overcome this problem, we can tell

kubeadm to skip this phase and run it manually later.

16 https://www.tigera.io/project-calico/
17 https://github.com/flannel-io/flannel
18 https://www.weave.works/oss/net/
19 https://cilium.io/
20 https://github.com/projectcalico/canal

37

Moreover, to create a highly available cluster, we have to pass the --control-plane-endpoint

argument with a DNS name of our master load balancer. Using the --upload-certs argument,

we can also configure the cluster to share the generated certificates across all control-plane

nodes automatically. By default, Kubernetes will use the 10.96.0.0/12 subnet as service cidr.

At the end, kubeadm will return a command that can be used on other nodes to join the cluster.

Figure 32 Initializing Kubernetes cluster

Once the first target of the load balancer becomes healthy, we can proceed with the addon

phase installation:

Figure 33 Load balancer status after initializing the first master node

Figure 34 Initializing addons

38

We can now copy the generated configuration file and access the Kubernetes cluster.

Figure 35 Accessing cluster for the first time

The node is not yet in a Ready state, as we still must install the Container Network Interface

plugin. This step will vary depending on the CNI plugin of choice. For Calico, the procedure to

install the CNI on clusters with less than 50 nodes is to apply one manifest:

Figure 36 Applying Calico

A few minutes later, the node should become Ready:

Figure 37 Verifying state of the first master node

We can now add other nodes using the kubeadm join command given in Figure 32. On a

worker node, the result should resemble the following:

Figure 38 Joining other nodes to the cluster

39

After a while, the kubectl get nodes should report all nodes as Ready:

Figure 39 Inspecting the state of all nodes

Note: By default, Kubernetes will create services in the 10.96.0.0/12 subnet, and the pod

subnet will be determined by the CNI plugin (Calico uses 192.168.0.0/16). To avoid network

overlap, changing these based on the organization's existing infrastructure may be necessary.

During cluster initialization, the --service-cidr and --pod-network-cidr arguments can be passed

to kubeadm. It is important to note that the --pod-network-cidr is merely metadata that may or

may not be read by the CNI driver. Further information can be found in the documentation of

the CNI driver.

3.4. Persistent Volumes

When implementing a cluster infrastructure utilizing persistent storage, it is vital to ensure that

the data is made accessible to all nodes in the system. Various distributed storage platforms

are available in the market, with some of the more popular on-premise options being Ceph

21and GlusterFS22. In addition, there are also emerging technologies, such as Rook23, which are

gaining traction in the field. Most major cloud providers offer a means of installing a Container

Storage Interface (CSI) driver or provide pre-configured Storage Classes. In cases where

automatic provisioning is not required, a simple Network File System (NFS) share may be a

viable solution.

In Docker, two key terms related to data persistence are volume and storage driver. The storage

driver manages the lifecycle of a volume, which can be mounted to a container. Kubernetes

distinguishes between Persistent Volumes, Persistent Volume Claims, and Storage Classes. A

21 https://ceph.io/en/
22 https://www.gluster.org/
23 https://rook.io/

40

Persistent Volume is a piece of storage that has been provisioned and made available to the

cluster. In contrast, a Persistent Volume Claim is a request for storage with certain

specifications such as capacity, access modes, or storage class. Storage classes describe the

characteristics of a particular class of storage. They can be used to specify things such as the

type of storage (e.g., SSD or HDD), the level of durability or availability, and the performance

characteristics of the storage. Storage Classes can be bound to a provisioner.

The Container Storage Interface (CSI) serves as a specification for communication between

the orchestrator and the storage provider, similar in function to the Container Runtime and

Container Network Interfaces. This specification enables storage providers to create plugins

capable of dynamic storage provisioning.

Figure 40 Visual representation of storage components in Kubernetes

The installation of Hetzner's CSI driver is a two-step process - creating a secret containing the

API key and applying a single manifest. The manifest will create a Storage Class with the name

hcloud-volumes, a Service Account with Cluster Role granting permission to watch and modify

objects related to Persistent Volumes. A Deployment will then use the Service Account with a

41

CSI controller and a DaemonSet that will run an agent on every node. The secret can be created

in the following way:

Figure 41 Creating secret for Hetzner Cloud API

Furthermore, the manifest can be applied similarly:

Figure 42 Applying Hetzer Cloud CSI Driver

To test if the volume is being provisioned, we can create a PVC and a Pod mounting that

volume:

Snippet 12 Pod with PersistentVolumeClaim example

42

We can apply the manifest from Snippet 12 using kubectl:

Figure 43 Verifying creation of Persistent Volume

3.5. Pod versus Deployment

Pods in Kubernetes are not managed in the sense that they do not have any built-in self-healing

or rescheduling capabilities. Once a Pod is created, it will continue to run until it is manually

deleted or encounters an error that causes it to crash. If Pod crashes or becomes unavailable,

it will not be automatically rescheduled or replaced.

To achieve high availability, it is necessary to use a higher-level resource such as a Deployment.

A Deployment allows to specify the desired number of replicas for an application and

automatically creates, updates, and deletes Pods as needed to maintain that desired state.

Moreover, deployments keep track of the applications' different versions and allow them to

quickly roll back to a previous version if needed.

Behind the scenes, Deployment uses another mechanism called ReplicaSet. The replica set

monitors and maintains the desired number of replicas. Deployment uses multiple ReplicaSets

to keep track of versions, scaling them accordingly.

Updating a Deployment in Kubernetes typically works by using a rolling update strategy. A

rolling update allows updating an application by gradually rolling out the new version to a

subset of replicas at a time while keeping the rest of the replicas running the previous version.

Rolling releases allow for a more controlled and predictable update process and minimize the

risk of disruptions to the application. The process typically works as follows:

The Deployment is updated with the new version of the application and the desired number of

replicas.

43

Figure 44 Updated Deployment with old ReplicaSet

The Deployment controller then creates a ReplicaSet with a newer application version.

As new replicas are created, the Deployment controller begins to scale down the replica

running the previous version.

Figure 45 Rolling release procedure

This process continues until the new ReplicaSet reaches the desired number of replicas.

Figure 46 Updated Deployment with new ReplicaSet

If any issues arise during the update process, the Deployment controller will roll back to the

previous version.

44

3.6. High Availability of the "Hello World!" application

When an application is deployed in Kubernetes using a Deployment resource, it will

automatically benefit from high availability as Kubernetes ensures that the desired number of

replicas of the application is running at all times, even in case of node failure or application

crash. To increase the high availability even further, we can run the application in multiple

replicas, preferably on separate machines, so that a node failure does not impact the

availability of the application.

The following manifest will create a Deployment of the "Hello World!" application with two

replicas. The podAntiAffinity will try to distribute the pods among available nodes.

Snippet 13 Deployment manifest for ha-demo-app

45

We can apply the deployment using kubectl in the following way:

Figure 47 Applying the ha-demo-app Deployment

3.7. Services

Services are used to expose multiple Pods running inside the cluster with a stable endpoint.

When multiple pods are available, a service works as a load balancer targeting only healthy

Pods. Kubernetes automatically creates a DNS entry for each service and allows other

components in the cluster to easily discover and communicate with the Pods associated with

the service. Services make it easy to scale and update the underlying Pods without affecting

the communication to the service. Moreover, Services can redirect ports.

Figure 48 Visual representation of a Service

46

Services target pods based on labels. In Snippet 13, we have added the label app=ha-demo-

app to the pods inside the deployment. We can now use those labels as a selector for our

service:

Snippet 14 Service manifest for ha-demo-app

After applying that manifest, we can describe the service object to verify that it has two

endpoints. If we create another pod in the cluster, we should also be able to access our

application through the service.

Figure 49 Applying the ha-demo-app Service

47

3.8. Ingress

Ingress allows external traffic to be routed to one or more services within the cluster. It acts

as a reverse proxy, routing incoming traffic to the appropriate service based on rules defined

in the Ingress resource. Additionally, Ingress can be used to provide SSL/TLS termination.

Figure 50 Visual representation of how Ingress routes external traffic to multiple services

Kubernetes defines rules for Ingress resources, but like with other components, it is

completely agnostic on how the controller is implemented. An Ingress controller is a

software component that runs within the Kubernetes cluster and is responsible for enforcing

the rules defined in Ingress resources. The Ingress controller listens for changes to the

Ingress resources and updates its configuration accordingly. There are numerous Ingress

controllers available on the market24. The controller market is rapidly evolving, and research

is usually necessary to determine which controller is most suitable for an organization.

Learnk8s25 has created an exhaustive Comparison of Kubernetes Ingress controllers. While it

is technically possible to deploy multiple controllers in a single cluster26, it is necessary to

include additional fields to the Ingress Resource starting from the first Ingress Resource.

24 https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
25 https://learnk8s.io/research
26 https://kubernetes.github.io/ingress-nginx/user-guide/multiple-ingress/

48

3.8.1. NGINX Ingress Controller

We will be continuing with the community-maintained NGINX Ingress Controller27. The

installation process is similar to both the CNI plugin and CSI driver. Essentially, a manifest file

has to be applied. However, we will have to modify the manifest due to our on-premise

characteristics. The modified Ingress Controller will resemble the following:

Figure 51 Visual representation of Ingress Controllers

By default, the manifest will create a Deployment with a single ingress controller replica. Since

our initial cluster goal was to create a highly available environment, we want a controller

present on every node. This can be achieved by simply swapping Deployment for a

DaemonSet:

Figure 52 Changing the NGINX Ingress Controller to work as a DaemonSet

The default deployment will also create a Service of type LoadBalancer. Such services depend

on an external provider and are generally only available in cloud environments. We will expose

27 https://kubernetes.github.io/ingress-nginx/

49

the controllers using a Service of NodePort type. This can be done by editing the manifest file

in the following way:

Snippet 15 Exposing NGINX Ingress Controller via NodePort

The 30080 and 30443 ports were used as, by default, only ports in the range 30000 and 32767

can be assigned to NodePort.

Since all requests to the ingress controllers will be made via the load balancer, it is necessary

to configure the proxy protocol on both sides to have accurate data on the requests. The

Ingress Controller configuration is stored in a ConfigMap resource called ingress-nginx-

controller. Therefore the manifest file can be edited in the following way to enable full support

of proxy protocol:

Snippet 16 Enabling Proxy Protocol support for NGINX Ingress Controller

50

We can now apply the manifest. After a few minutes, the pods should become Running, and

the load balancer should become healthy.

Figure 53 Verifying the status of NGINX Ingress Controller

Figure 54 Veryfing the state of Hetzner Load Balancer

It should be noted that the community NGINX Ingress Controller should not be confused with

F5's NGINX Ingress Controller. Care should be taken when reading the documentation to

ensure the correct one is read.

It should also be noted that the included Terraform scripts will only create an HTTP load

balancer. To create an HTTPS load balancer, a Service of TLS Termination type must be

created, and a certificate uploaded via Hetzner's GUI.

51

3.8.2. Ingress Resource

The following manifest can be used to expose our demo application:

Snippet 17 Ingress manifest for ha-demo-app

After applying the manifest, we should be able to access the application from outside of our

cluster, provided the DNS entries are correct.

Figure 55 Accessing ha-demo-app from a web browser via load balancer address

52

4. Example scenario

This chapter aims to propose a fault-tolerant data processing pipeline. Such a pipeline shall

ensure that data can still be processed despite failures or errors. One example of its usage

could be in a medical setting where critical data is received from various medical equipment.

4.1. Data processing pipeline

The proposed data processing pipeline consists of external devices, a data ingestion API, a

message broker, a data analyzer, a database, and a user interface.

The external devices will be emulated for demonstration purposes by a data generator

application. The application will emulate one hundred devices at the same time. Each "device"

will establish its TCP connection with the data ingestion API and send generated data every

ten seconds. When the connection is dropped, the application will try to reestablish the

connection and resend the data. The time between attempts to send the data will grow linearly

to a maximum of 10 seconds. A maximum of ten retries will be attempted.

The data ingestion API will provide the external devices with a secure interface (HTTPS) to

send the data and then forward the received data to RabbitMQ's queue. Once the data is

inserted into the RabbitMQ's queue, it will be considered as received, and a successful

response will be sent back to the device.

The data ingestion API would be an excellent place to implement device authorization

functionality if needed. Such functionality could be used, for example, for licensing purposes.

The purpose of the message broking system (implemented in RabbitMQ) is to ensure that

every message received will be consumed (i.e., analyzed and saved by the data analyzer).

Without a message broker, the received data could be lost during an application crash or a

node failure. Moreover, the queue size could also give us valuable insight into the performance

of our pipeline.

The data analyzing application will save the received data into a database and analyze the last

two hundred entries to determine if the few recent entries are anomalies. If an anomaly is

detected, it will be saved into a separate table in the database.

53

CockroachDB will be used as a database. It is a modern distributed SQL database designed to

be a highly scalable and strongly-consistent key-value store. It is also highly resilient to disk

and machine failures.

The anomaly API will provide a way to read the recorded anomalies. It will also provide a

website with a user interface for demonstration purposes.

Figure 56 Visualization of the data processing pipeline

4.2. High Availability and Fault Tolerance

To achieve high availability of our applications, we will run them in two replicas. The replicas

will be distributed across different nodes in the cluster. The second replica will immediately

take over if the application crashes or a node fails. The Kubernetes cluster will also make sure

to recreate the failed replica on a different node.

Since both RabbitMQ and CockroachDB are stateful applications, we will be using their built-in

clustering functionality. Both applications provide Kubernetes operators to manage the

clusters.

We will also use kube-state-metrics28 together with Prometheus29 and Grafana30 to monitor the

resource usage of the applications. Since the monitoring is not a critical part of the data

processing pipeline, each application will run with a single replica.

28 https://github.com/kubernetes/kube-state-metrics
29 https://prometheus.io/
30 https://grafana.com/

54

Figure 57 Cluster view of the data processing pipeline

4.3. Pod failure

4.3.1. Data Ingestion API failure

The Data Ingestion API is the entry point for our data processing API. Therefore making sure

it is always available is crucial. When a pod crashes, it will automatically be removed from

Service's endpoint, and no further data will be routed to it. To test the time it takes Kubernetes

to remove a pod from service, a /kill endpoint was added to the Data Ingestion API. Once a

request is sent to that endpoint, the application will exit without sending a response. From

Kubernetes' view, that will be considered an application crash. The request will be sent by

another pod over cluster IP so that the NGINX Ingress Controller will not reattempt the request.

To monitor the changes in real-time, console logging with the number of attempted retries has

been added to the data generator.

During testing, it was not possible to observe more than two retries. Each retry is postponed

by a second longer than the previous, meaning that the failover procedure took no more than

four seconds.

55

4.3.2. RabbitMQ failure

RabbitMQ offers highly available clustering, though the default RabbitMQ's queues reside only

on one node. In a highly available environment, it is crucial to use a queue that is being

replicated across all nodes in the cluster. The quorum queue31 offers such functionality. With

the quorum queue, any pod (including the one that is internally classified as queue leader) can

be stopped, and the cluster will continue to work without dropping a single message or

request.

To test the queue's high availability, the container should be forcefully stopped on a node

rather than via the kubectl delete pod command. This is because the kubectl delete pod

command will issue a SIGTERM signal to gracefully shut down the process before force-killing

the container. The container can be forcefully stopped by issuing a SIGKILL signal manually

(kill -9 <process id>) to the container's process from the node, or one can use crictl to do the

same (crictl stop --timeout 0 <container id>).

4.3.3. Data Analyzer failure

Since all messages are stored in RabbitMQ's queue until their consumption is acknowledged,

the Data Analyzer can be stopped anytime. If a message is delivered, but its consumption is

not acknowledged (i.e., the application crashed), RabbitMQ will attempt to redeliver the

message to the next consumer (i.e., another data analyzer replica).

4.3.4. CockroachDB failure

Similarly to RabbitMQ, CockroachDB uses internal clustering. A majority of replicas have to

acknowledge every data modification within the database. This ensures that no data can be

lost in a single replica failure. However, it is possible to lose a connection during an operation.

Therefore, if no message broking system is implemented, the client application should be

capable of reconnecting to CockroachDB.

4.3.5. Alerts API failure

The Alerts API is an entirely stateless application used for read-only access to the database.

Therefore no special measurements have to be taken.

31 https://www.rabbitmq.com/quorum-queues.html

56

4.3.6. Update failure

To protect against faulty deployments, a livenessProbe32 should be used. It gives Kubernetes

additional insight into whether the application is behaving as expected. The liveness probe can

be implemented in three ways: command execution within the pod; http request; establishment

of tcp connection.

For demonstration purposes, the Data Ingestion API was extended with livenessProbe and

then a faulty version was deployed. The rolling update process discussed in chapter 3.5 makes

sure that the previous deployment stays running.

Figure 58 Failed deployment of Data Ingestion API

4.4. Node failure

After a node failure it will take about one minute for Kubernetes to mark a node as NotReady.

After the default eviction timeout33, that is five minutes, pods running on that node will be

rescheduled on different nodes. During this time it is possible that some requests will be

forwarded to the failed node. Such requests should be repeated until they hit a healthy node.

Note: If you plan to bring multiple nodes down at a time for maintenance, consider

implementing PodDistruptionBudget34 to gracefully drain the nodes without impacting the

applications.

32 https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-
probes/
33 https://kubernetes.io/docs/concepts/architecture/nodes/#condition
34 https://kubernetes.io/docs/tasks/run-application/configure-pdb/

57

5. Monitoring

When specifying a Pod manifest, it is possible to specify CPU/RAM requests and limits.

Requested resources are guaranteed, whereas limits define the maximum amount of

resources a pod can consume. For example, if a pod is defined with a request of 128MB of

memory, the Kubernetes scheduler will make sure that the server on which a Pod will be

scheduled will have at least 128MB of memory available for that Pod. The Pod may consume

more than 128MB of memory unless a limit is also defined. When a Pod tries more than the

allowed amount of memory, the process will be terminated with an OutOfMemory error.

Every kubelet exposes metrics about containers running on a node via built-in cAdvisor35. The

metrics can be accessed via Kubernetes API, and Prometheus can periodically scan them.

Since every request to the Kubernetes API has to be authenticated and authorized, it is

recommended that a ServiceAccount with adequate permissions is created. Example manifest

and instructions can be found in the metrics-components repository in Appendix 1.

To further extend monitoring capabilities, kube-state-metrics can provide Prometheus metrics

with additional information on the state of the entire Kubernetes cluster (e.g., number of

Deployments, number of healthy/unhealthy Pods).

35 https://github.com/google/cadvisor

58

5.1. CPU consumption

To measure CPU consumption over time, two metrics have to be used, that is

container_cpu_usage_seconds_total and container_spec_cpu_period. Together with

container_spec_cpu_quota a graph of current CPU usage vs. CPU limit can be plotted.

Figure 59 CPU consumption plotted in Grafana

5.2. RAM usage

The current RAM usage is given via container_memory_usage_bytes metric. It can be combined

with container_spec_memory_limit_bytes to plot current RAM usage vs. RAM usage.

Figure 60 RAM usage plotted in Grafana

59

5.3. Network I/O

The container's network metrics are separated into receive

(container_network_receive_bytes_total) and transmit

(container_network_transmit_bytes_total) metrics. When combined, they can be used to plot

the total network traffic.

Figure 61 Network I/O plotted in Grafana

A Grafana's dashboard JSON definition of the above graphs can be found in the metrics-

components repository in Appendix 1.

60

6. Scalability

All components of the proposed data processing pipeline except for RabbitMQ and

CockroachDB can be classified as stateless and, therefore, can be scaled horizontally nearly

infinitely.

CockroachDB has been built from the ground up to allow for scalability, and clusters can be

scaled horizontally by manipulating the number of nodes.

The proposed RabbitMQ scheme emphasizes consistency over scalability. To improve

RabbitMQ's scalability, federation36 can be implemented.

The applications have been written in a single-threaded manner. Therefore each replica has

limited throughput. The author suggests coding applications multi-threadedly whenever high

throughput is necessary.

Kubernetes clusters can also be scaled to enormous sizes. According to the Kubernetes

documentation37:

Kubernetes is designed to accommodate configurations that meet all of the
following criteria:

- No more than 110 pods per node

- No more than 5,000 nodes

- No more than 150,000 total pods

- No more than 300,000 total containers

It is worth noting that the author has successfully run a cluster with nearly three hundred pods

on a single node in a production environment with some additional commitment (notably, all

the pods had defined resource requests and limits).

36 https://www.rabbitmq.com/distributed.html
37 https://kubernetes.io/docs/setup/best-practices/cluster-large/

61

7. Summary

The thesis is a comprehensive guide to implementing highly scalable and highly available

environments for applications based on Kubernetes. A production-grade cluster was

described and implemented with a focus on high reliability for mission-critical applications.

The project took into account the challenges of operating such a large-scale cluster.

The Kubernetes cluster was extended with dynamic volume provisioning, an ingress controller,

and Calico-based networking.

A fault-tolerant data processing pipeline with simulated IoT device pools was implemented to

demonstrate the effectiveness of the proposed solution. The scenario showcased the ability

of the Kubernetes cluster to recover from failures and maintain its availability even in the event

of node failures or faulty application updates. Recommendations were also offered on

monitoring and scaling the application to ensure continued efficient operation as the cluster

grows.

The data processing pipeline was implemented with multiple components written in Deno.

RabbitMQ was used as a message broking system, and CockroachDB was used to store the

processed data.

The monitoring system was implemented with the help of cAdvisor and kube-state-metrics in

combination with Prometheus and Grafana to visualize the data over time.

Overall, the work provides a comprehensive solution for IT students and professionals seeking

to implement a robust and scalable Kubernetes-based environment for their containerized

applications. The implementation, simulated scenario, monitoring, and scaling solutions,

provide valuable insights and guidance for software engineers and architects embarking on

similar projects.

62

63

Acknowledgments

Some parts of this document have been written with the help of OpenAI's ChatGPT338. The

author is aware of the shortcomings of generative pre-trained language models and has never

considered the AI assistant a formal source of information. Instead, it was primarily used for

preliminary copywriting drafts of individual paragraphs and proofreading. All the information

generated by ChatGPT has been curated by the author and is backed by external sources or

years of professional experience.

The graphs have been made using Canva and were inspired by official Kubernetes

documentation. Code snippets were created with the help of the Carbon App39.

Kubernetes icons (characterized by hexagonal shape and blue background) were designed by

Kubernetes community members40 and used under the Creative Commons Attribution 4.0

International license.

The "user" and "circuit" icons used in Figure 56 were made by Freepik's team from

www.flaticon.com.

38 https://chat.openai.com/
39 https://carbon.now.sh/
40 https://github.com/kubernetes/community/tree/master/icons

64

Glossary

Term Definition

Node A single instance of a physical or virtual machine that provides computing
resources

Host In the context of containerization, a physical or virtual machine on which
containers are run. It provides the underlying operating system, hardware,
and resources.

Container A container is a lightweight and standalone execution environment for an
application, including everything it needs to run, that can be easily moved
between environments.

Container
Image

A container image is a packaged version of an application and its
dependencies and configuration that can be run in a container.

Cloud
provider

A company that offers cloud computing services, allowing users to access
computing resources over the internet on a pay-as-you-go basis.

FQDN A fully qualified domain name (FQDN) is a complete and unique domain
name that specifies the exact location of a network resource. It typically
consists of a combination of the hostname, domain name, and top-level
domain, such as "server.domain.tld"

Terraform A tool for building, changing, and versioning infrastructure safely and
efficiently. It uses configuration files to describe the desired state of the
infrastructure and can manage infrastructure resources across multiple
cloud providers and on-premises environments.

Package

repository

A Linux package repository is a directory that contains packaged software
for Linux systems, which can be downloaded and installed using a package
manager such as apt or yum.

Pod A pod is the smallest deployable unit in the Kubernetes object model. It
represents a single instance of a containerized application.

Controller In Kubernetes, controllers are used to manage the system's desired state.
They continuously monitor the current state and apply changes to align it
with the desired state.

65

References

About the Open Container Initiative. (n.d.). Retrieved November 11, 2022, from

https://opencontainers.org/about/overview/

Comarch. (n.d.). Opaska Życia: The Band of Life. Opaska Życia. Retrieved November 7, 2022,

from https://www.comarch.pl/healthcare/produkty/teleopieka/opaska-zycia/

Diego Ongaro & John Ousterhout. (2014). In search of an understandable consensus

algorithm. USENIX Annual Technical Conference, 305–320.

docker build. (n.d.). Docker Documentation. Retrieved January 30, 2023, from

https://docs.docker.com/engine/reference/commandline/build/

Docker Engine release notes. (2022, November 10). Docker Documentation.

https://docs.docker.com/engine/release-notes/prior-releases/

Dua, R., Raja, A. R., & Kakadia, D. (2014). Virtualization vs Containerization to Support PaaS.

2014 IEEE International Conference on Cloud Engineering.

https://doi.org/10.1109/ic2e.2014.41

Erl, T. (2005). Service-oriented Architecture: Concepts, Technology, and Design. Prentice Hall.

Gillis, A. S. (2022, March 4). What is the internet of things (IoT)? IoT Agenda.

https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT

M, A., Dinkar, A., Mouli, S. C., B, S., & Deshpande, A. A. (2021). Comparison of Containerization

and Virtualization in Cloud Architectures. 2021 IEEE International Conference on

Electronics, Computing and Communication Technologies (CONECCT).

https://doi.org/10.1109/conecct52877.2021.9622668

Mehndiratta, H. (2021, April 2). Comparing Kubernetes Container Network Interface (CNI)

providers. Kubevious. https://kubevious.io/blog/post/comparing-kubernetes-

container-network-interface-cni-providers

Schmeling, B., & Dargatz, M. (2022). The Impact of Kubernetes on Development. Kubernetes

Native Development, 1–57. https://doi.org/10.1007/978-1-4842-7942-7_1

Wang, Z., Guo, C., Fu, Z., & Yang, S. (2020). Identifying the Development Trend of ARM-based

Server Ecosystem Using Linux Kernels. 2020 IEEE International Conference on Progress

in Informatics and Computing (PIC). https://doi.org/10.1109/pic50277.2020.9350743

66

What is the Principle of Least Privilege (POLP). (n.d.). OneLogin. Retrieved November 29, 2022,

from https://www.onelogin.com/learn/least-privilege-polp

67

Table of figures

Figure 1 Hello World! application (version 2.2) accessed from Web Browser 6

Figure 2 Building ha-demo-app (version 2.2) using the docker build command 7

Figure 3 Manually tagging the ha-demo-app image with version 2.2.. 7

Figure 4 Tagging ha-demo-app image during build time ... 8

Figure 5 Running ha-demo-app (version 2.2) with published ports ... 8

Figure 6 Running ha-demo-app (version 2.3.1) ... 9

Figure 7 History of image ha-demo-app (version 2.3.1) ... 10

Figure 8 Graphical representation of image history ... 11

Figure 9 Different tags available on Docker Hub .. 13

Figure 10 Application running as root (before changes).. 14

Figure 11 Application running as deno-app (after changes) .. 15

Figure 12 Image sizes after changing the base image to Alpine (version 2.3.5-alpine) 16

Figure 13 Image sizes after implementing multistage build (version 2.3.5-multistage) 17

Figure 14 /logs endpoint in a web browser ... 19

Figure 15 Creation of a docker volume ... 19

Figure 16 Automatically creating a volume with docker run .. 19

Figure 17 Manual creation of docker network .. 22

Figure 18 Running ha-demo-app with network and volume (version 2.5) 22

Figure 19 Visual representation of network with ha-demo-app and elastic stack 23

Figure 20 Visual representation of components in a master Kubernetes node 26

Figure 21 Visual representation of components in a worker Kubernetes node 27

Figure 22 Visual representation of a segmentation ... 28

Figure 23 Visual representation of internal Docker calls ... 29

Figure 24 Installing containerd ... 33

Figure 25 Generating configuration for containerd .. 33

Figure 26 Modyfing containerd to enable systemd cgroups ... 34

Figure 27 Restarting containerd to apply the new configuration .. 34

Figure 28 Enabling overlay and br_netfilter kernel modules .. 34

Figure 29 Enabling IPv4 forwarding ... 34

Figure 30 Adding Kubernetes package repository .. 35

Figure 31 Installing kubeadm and kubelet .. 35

Figure 32 Initializing Kubernetes cluster ... 37

Figure 33 Load balancer status after initializing the first master node 37

68

Figure 34 Initializing addons .. 37

Figure 35 Accessing cluster for the first time ... 38

Figure 36 Applying Calico ... 38

Figure 37 Verifying state of the first master node .. 38

Figure 38 Joining other nodes to the cluster .. 38

Figure 39 Inspecting the state of all nodes ... 39

Figure 40 Visual representation of storage components in Kubernetes 40

Figure 41 Creating secret for Hetzner Cloud API .. 41

Figure 42 Applying Hetzer Cloud CSI Driver .. 41

Figure 43 Verifying creation of Persistent Volume ... 42

Figure 44 Updated Deployment with old ReplicaSet .. 43

Figure 45 Rolling release procedure .. 43

Figure 46 Updated Deployment with new ReplicaSet... 43

Figure 47 Applying the ha-demo-app Deployment.. 45

Figure 48 Visual representation of a Service .. 45

Figure 49 Applying the ha-demo-app Service ... 46

Figure 50 Visual representation of how Ingress routes external traffic to multiple services .. 47

Figure 51 Visual representation of Ingress Controllers .. 48

Figure 52 Changing the NGINX Ingress Controller to work as a DaemonSet 48

Figure 53 Verifying the status of NGINX Ingress Controller .. 50

Figure 54 Veryfing the state of Hetzner Load Balancer ... 50

Figure 55 Accessing ha-demo-app from a web browser via load balancer address 51

Figure 56 Visualization of the data processing pipeline .. 53

Figure 57 Cluster view of the data processing pipeline ... 54

Figure 58 Failed deployment of Data Ingestion API ... 56

Figure 59 CPU consumption plotted in Grafana ... 58

Figure 60 RAM usage plotted in Grafana .. 58

Figure 61 Network I/O plotted in Grafana ... 59

Table of tables

Table 1 Recommended number of instances in a highly available cluster 28

Table 2 Resources created in Hetzner Cloud .. 32

Table 3 Comparision of available CNI plugins (Mehndiratta, 2021) ... 36

69

Table of snippets

Snippet 1 Dockerfile version 2.2 .. 6

Snippet 2 Dockerfile with dependency caching (version 2.3.1) ... 9

Snippet 3 Dockerfile with layer caching .. 12

Snippet 4 Dockerfile with defined USER .. 14

Snippet 5 Dockerfile with Alpine as the base image .. 15

Snippet 6 Multistage Dockerfile example .. 16

Snippet 7 Example of Dockerfile with EXPOSE and LABEL instructions 18

Snippet 8 Go function to adjust permissions for deno-app user ... 20

Snippet 9 gocompiler stage in Dockerfile ... 21

Snippet 10 runner stage in Dockerfile.. 21

Snippet 11 Docker compose file for ha-demo-app (version 2.5) ... 24

Snippet 12 Pod with PersistentVolumeClaim example .. 41

Snippet 13 Deployment manifest for ha-demo-app .. 44

Snippet 14 Service manifest for ha-demo-app.. 46

Snippet 15 Exposing NGINX Ingress Controller via NodePort ... 49

Snippet 16 Enabling Proxy Protocol support for NGINX Ingress Controller 49

Snippet 17 Ingress manifest for ha-demo-app ... 51

70

1

Appendix 1 - Software used

- Docker Desktop (20.10.21):

- Available from: https://docs.docker.com/desktop/install/windows-install/

- Docker Compose (v2.12.2):

- Included with Docker Desktop

- Deno (1.28.0):

- Available from: https://deno.land/manual@v1.28.0/getting_started/installation

- Kubernetes (1.25.5):

- Setup discussed in chapter 3.2

- Python (1.28.0):

- Available from: https://www.python.org/downloads/

- No additional libraries were used

- ha-demo-app (version adequate to chapter number):

- Available from: https://gitlab.com/ha-thesis/ha-demo-app

- multiple versions available as git branches

- elasticsearch (8.5.0):

- Available from:

https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html

- kibana (8.5.0):

- Available from: https://www.elastic.co/guide/en/kibana/current/docker.html

- Data Generator (latest):

- Available from: https://gitlab.com/ha-thesis/data-generator

- Data Ingestion API (latest):

- Available from: https://gitlab.com/ha-thesis/data-ingestion-api

- Data Analyzer (latest):

- Available from: https://gitlab.com/ha-thesis/data-analyzer

- Alerts API (latest):

- Available from: https://gitlab.com/ha-thesis/alerts-api

- Alerts GUI (latest):

- Available from: https://gitlab.com/ha-thesis/alerts

- CPU Stresser (latest):

- Available from: https://gitlab.com/ha-thesis/cpu-stresser

- RAM Hogger (latest):

- Available from: https://gitlab.com/ha-thesis/ram-hogger

2

- Prometheus (v2.40.7):

- Available from: https://prometheus.io/download/

- Deployment manifest available from: https://gitlab.com/ha-thesis/metrics-

components

- Grafana (9.3.2):

- Available from: https://grafana.com/grafana/download

- Deployment manifest available from: https://gitlab.com/ha-thesis/metrics-

components

- kube-state-metrics (v2.7.0):

- Available from: https://github.com/kubernetes/kube-state-metrics

- Deployment manifest available from: https://gitlab.com/ha-thesis/metrics-

components

- RabbitMQ Cluster Operator (2.1.0;):

- Available from: https://www.rabbitmq.com/kubernetes/operator/operator-

overview.html

- Deployment manifest available from: https://gitlab.com/ha-thesis/rabbitmq

- CockroachDB Cluster Operator (2.1.0;):

- Available from: https://www.cockroachlabs.com/docs/stable/deploy-cockroachdb-

with-kubernetes.html

- Deployment manifest available from: https://gitlab.com/ha-thesis/rabbitmq

